Reaction of Superoxide and Hydroperoxide with a Series of Manganese Complexes

W. M. COLEMAN, III

University of California, Berkeley, Naval Biosciences Laboratory, Naval Supply Center, Oakland, Calif. 94625, U.S.A.

and L. T. TAYLOR*

Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Va. 24601, U.S.A.

Received December 2,1981

Manganese(II) and manganese(III) complexes of *polydentate Schiff base ligands have been reacted with superoxide and hydroperoxide ion, With linear pentaden tate ligands, manganese(III) appears to be reduced to a 'Mn2'-02' species on reaction with superoxide. Evidence is presented in support of this formulation. No observable reaction is obtained with tetradentate ligands. All manganese(III) complexes are reduced to manganese(U) hydrated ion with hydroperoxide.*

Introduction

In recent years, metalloenzymes containing manganese *[l-3]*, *and other transition metals ^{[4-61} have* nese $[1-3]$, and other transition metals $[4-6]$ have
been found which catalyze the disproportionation of superiorities and **O**¹, *the molecular oxygen and the molecular oxygen* hydroxide amon_, O₂, to molecular oxygen and implicated in the photosynthetic liberation of implicated in the photosynthetic liberation of dioxygen from water $[1, 8]$. No doubt the extent α yzen nom waturle, of the double the extent which is a control of the interesting and the dependent on the dependent on the dependent on the dependent on the second on which involve dioxygen species are dependent on the redox properties of the manganese. For example, we have been able to correlate reactivity toward dioxygen with manganese chelate reduction potentials [9, 10]. As an extension of this work, we wish ats $[\cdot, \cdot]$, i.e. and α reactions of α : and α is α : α s report the reactions of O_2 and P_3

Experimental

All manganese complexes employed in this study have been previous characterized in this superave occur previously enaracterized [5-15], superoxide solutions were prepared in anhydrous dimethyl-sulfoxide (DMSO) (Burdick $& Jackson$) employing d diction-18crown-6 d d d d d e e f f f g g g g g h h g g g h i i i were prepared to the prepared the prepared to the contract of the contract of

amounts of deionized water. $KO₂$ was obtained from Alfa Ventron. $Na₂O₂$ was obtained from Fisher Scientific Company. Ultraviolet-visible spectra were recorded in anhydrous DMSO using a Cary Model 219 spectrophotometer employing 1 cm cells. Electron spin resonance spectra were obtained on solutions of manganese complexes prepared in SO/50 DMF/T oluene (V/V) and 50/50 DMSO/H₂O employ- $\frac{1}{2}$ variant Model $\frac{1}{2}$ and $\frac{1}{2}$ DMSO(1120 cmptoymeters.

Results and Discussion

Superoxide Reactivity

In a previous study we reported on the reaction of NO with a series of $Mn(III)$ complexes $[10, 15]$. F_{F} a series of miquip complexes F_{F} , F_{F} reduction process had taken place to yield a (Mn(II)reduction process had taken place to yield a $(Mn(II) - NO^*)$ complex. Superoxide ion may function in a σ) complex, superconder for may function metals. complexes incorporations incompleted personalized pentadental personalized pentadental personalized personaliz
International personalized pentadental personalized personalized personalized personalized personalized persona (2) The members of the pentatental structures in the members of the memb $SOALDI$ i MCO , $MH(2ALDA1L)NCO$, $MH(11D1L1)T$ NCS] and hexadentate $[Mn(ZSAL 1,5,8,12)NCS]$ ligands (Structure I) wherein $Z = 5 \text{-} NO_2$, 5-H, 5-CH₃O, 3-NO₂ and 3-CH₃O have been successfully r_{c} , r_{c} and r_{c} and r_{c} in the second succession r_{c} action with O_2 . Manganos (111) complexes modeporating quadridentate ligands, Mn(SALOPHEN)NCS and Mn(SALEN)Cl, appear to not react with O_2^{1-} .

Figure 1 is a trace of the visible spectrum produced when a manganese (III) complex containing either a penta- or hexadentate ligand is reacted with successive 5 μ l quantities of a 0.1 M O_2^{1-} solution. The presence of an isobestic point suggests that only two species are present in solution. The spectra of the titrated solution clearly show a reduction in intensity of the Mn(III) d-d band. A shift to lower wavelength $(380-360$ nm) for the UV absorbing charge transfer band is also observed. Accompanying
this reduction in intensity, is a color change from

0 Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

^{0020-1693/82/0000-0000/\$02.75}

Structure I

rig. 1. Reaction of 5 μ_1 additions of 0.1 *M* O₂ with 2.5 mi

Fig. 2. Plot of absorbance at 544 nm of 2.5 ml of 10^{-3} M M_5 . 2. Hot of absoluting at $J+$ min of 2.5 min of 10 pl additions with $5 - 1$ 60.1×10^{-1} DMSO.

green to yellow. The resulting yellow solutions are insensitive to dioxygen. These factors suggest that the manganese specie in solution is not a simple manganese(H) complex which itself has been shown manganese(II) complex which itself has been shown
to be dioxygen reactive $[11]$ under these conditions. These changes in the UV-VIS spectra upon reaction of Mn(III) with O_2^{1-} are reminiscent of those found when the same Mn(III) complexes were reacted with N Ω . The main difference between the two is the N position of the charge transfer band of the 'Mn(II)O position of the enarge transier band of the $m_1(11)O_2$ $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\in$ nm). It should be pointed out that the visible spectra
of these products do not resemble that of a native $M_n(II)$ complex (A,, $= 275$, nm). Consequently $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ it is reasonable to conclude that the O_2^{1-} reaction with $Mn(III)$ yields a new $Mn(II)$ complex, possibly described as a dioxygen complex.

In an attempt to determine the stoichiometry of t_{th} and attempt to determine the stolementary who reaction, a provision absorbance κ risas \mathbf{W}_2^{eq} re \mathbf{M}_1^{eq} was made, Fig. 2, for the general reaction described by Fig. 1. The curve shows a change in slope at $N_{\text{O}_2^{\text{L}}-}/N_{\text{Mn}} \cong 1$ as well as a further reaction as more $\frac{10^{12} - 11 M_B - 1}{2}$ as well as a further reaction as filored. σ_2 is added, this secondary reaction can be ascribed to a reaction with the ligand system in the manner
observed during the oxygenation of Mn(ZSALDPT). Support for this assignment comes from the fact that reaction of Ω ⁻with several free ligands (5-N0²SAL) $1,5,8,12; \ldots$ $5,10,6,11$ FM; $5,10,6,11$ FMP; $5,10,5$ $1,5,8,12$; $5-NO₂SALEN$; $5-NO₂SALDPT$; $5-NO₂$. SALOPHEN) revealed minor but significant changes in each UV-VIS spectrum. ESR spectra of solutions wherein the Mn(III) is in excess are silent both at wherein the military is in excess are shell been at 150° . supported by this observation: 1) the product formed suggested by this observation. There is product formed with σ_2 is not a simple light spin min(ii) complex $\frac{1}{2}$ I is a second s

At least three reactions should be considered **nm** when one attempts to interpret these results. The UV-VIS data would appear to eliminate reaction

$$
Mn^{+3} + O_2^{1-} \rightleftharpoons Mn^{+3} - O_2^{1-}
$$

Manganese Complexes

Fig. 3. Plot of absorbance at 544 nm of 2.5 ml of 10^{-3} M $Mn(5-NO₂ SALDPT)(NCS)$ titrated with 5 μ l aliquots of 0.1 $M O₂²$ in DMSO.

 $Mn^{+3} + O_2^{1-} \rightleftharpoons Mn^{+2} + O_2$ (2)

 $Mn^{+3} + O_2^{1-} \rightleftharpoons Mn^{+2} - O_2^{0}$ ⁽³⁾

(1) because the $d-d$ band for Mn(III) disappears. The absence of an ESR signal would rule-out reaction (2) wherein a free Mn(II) is generated. Reaction (3) appears to be implicated. Exchange broadening between the Mn(II) and O_2° could account for the absence of an ESR signal. This is further supported by the fact that the native Mn(I1) complexes, in fact, react with O_2 under these conditions to give $Mn(III)$ μ -peroxo dioxygen complexes.

The reaction of Mn(III) complexes containing only four donor atoms with O_2^{1-} was also investigated. It was found that these complexes, Mn- (SALEN)Cl and Mn(SALOPHEN)NCS, do not react with O_2^{1-} . Proof for this comes from the fact that no change is observed in the Mn(II1) visible spectrum when O_2^{1-} is added. Reasons for this difference in reactivity are not readily apparent; however, certain factors can be eliminated. Recent electrochemical data on the reduction of Mn(SALEN)Cl and Mn- (SALOPHEN)NCS [16] reveal that each potential is comparable to a related 5-coordinate complex, $Mn(SALDPT)NCS$, which does react with O_2^{1-} . Reduction potentials for Mn(SALEN)Cl, Mn- (SALOPHEN)NCS, and Mn(SALDPT)NCS are -0.297 mv, -0.153 mv and -0.245 mv respectively verset V_{S} . The substitution potentials were the main criteria, one would predict that either criteria, one would predict that either
Mn(SALOPHEN)NCS or Mn(SALEN)Cl_should_react with O_2^{1-} . In a related study the $E_{1/2}$ for Mn(TPP)Cl

Fig. 4. Reactions of 5 μ l additions of 0.1 *M* O¹/₂ with 2.5 ml of 10⁻⁴ *M* 5-NO₂SAL 1,5,8,12 free ligand in DMSO.

in DMSO solution has been reported to be -0.33 mv versus SCE [17] which has been independently [18] indicated to react with O_2^{1-} to yield Mn(TPP). The latter was identified by its characteristic visible spectral properties. No information was provided pectral properties, two information was provided products better characteristics of reactants and products. Hence, reduction potentials alone do not seem to afford a logical reason for the reactivity differences. Furthermore, we found no apparent substituent effects in O_2^{1-} reactivity since $Z = 5-NO_2$ and $Z = 5 \text{CH}_3\text{O}$ yielded the same results. Structural differences, no doubt, exist between complexes containing tetradentate and higher polydentate ligands which may cause subtle changes in manganese d-orbital energies. For example, the bonding d-orbital on manganese(III) may match up better with the O_2^1 bonding orbital when 5 and 6 coordinate ligands rather than 4 coordinate ligands are involved. We cannot, of course, discount the notion that in DMSO all manganese(II1) species regardless of polydentate ligand may be solvated six-coordinate structures.

Only manganese(II) complexes with $5-NO₂$ derived ligands [Mn(5-NO₂SALDPT), Mn(5-NO₂SAL 1,5,8,12) and $Mn(5-NO₂SALBPT)$ have been shown to react with O_2^{1-} . There does not appear to be any evidence to suggest that Mn(I1) is being oxidized to Mn(III) or reduced to Mn(I) by O_2^{1-} . The spectral changes observed are very similar to those which occur when the uncomplexed $5-NO₂$ ligand [19] $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\in$ V_2 is reacted with V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 , V_9 , V_1 , V_2 , V_3 , V_4 , V_5 , V_6 , V_7 , V_8 , V_9 , $V_$ $\Omega = \{x_0, x_1, x_2, \ldots, x_n\}$ σ_2 to form a stable, isolable superoxy complete The characteristics of the product from UV-Visible and ESR measurements have led the authors to conclude that the complex is highly ionic with little electron transfer from O_2^{1-} to $Zn(II)$. In our laboratory, we have reacted Zn(SALEN) and Zn- (ZSALDPT) with O_2^1 but find, as in the Mn(II) case, no evidence for reaction

Hydroperoxide Reactivity

Each complex studied regardless of polydentate ligand reacts with HO_2^{1-} (5 μ l amounts of 0.1 *M* aqueous solution) as shown by the disappearance of the Mn(III) $d-d$ band. A 1:1 stoichiometry of oxidant to reductant is indicated (Fig. 4). This well behaved curve would suggest that the solvent DMSO is not reacting with peroxide to yield a sulfone. The presence of two well-defined isosbestic points suggest that reaction with HO_2^{1-} occurs with the absence of any long-lived intermediate. The above reaction was also monitored via ESR. Addition of HOIwas also monitored via ESR. Addition of HO_2^{-} to those complexes containing pentadentate ligands yielded a six line ESR pattern with a coupling constant of 89 gauss. This result is reminiscent of the $Mn(III)$ + NO reaction which we reported as a one electron reduction [13] to yield high spin Mn(I1). No signal attributable to O_2^{1-} is observed at -150 °C.

Hence, we conclude that HO_2^{1-} has reduced Mn(III) to Mn(II), and since the peroxide was added as an aqueous solution, any $\dot{\mathbf{O}}_2^{1-}$ produced would be immediately consumed.

In a related study, Stein et al., [21] have examined the reactions of superoxide and peroxide with Mn(II) and Mn(III) complexes of EDTA and CyDTA in aprotic media. Using ESR, cyclic voltammetry and UV-Visible spectra, they concluded that superoxide reduced Mn(III) to Mn(II) with liberation of $O₂$. Results with our complexes do not give a simple Mn(I1) complex since the reduced product does not exhibit the properties of our previously characterized Mn(I1) complexes. We suggest only partial electron transfer from O_2^{1-} to Mn(III) has occurred. Stein also examined the reaction of O_2^{1-} with a series of Mn(II) complexes. The stoichiometry of the reaction was found to be 1 Mn:20 1m and it was concluded that a Mn(IV)-oxo species was being produced. Again, this stands in contrast to our results wherein O_2^{1-} did not appear to react with Mn(II).

Acknowledgement

This research was supported in part by the Office of Naval Research and by NIH Research Grant 2 1844-05. Helpful discussions with Fred Frederick during the preparation of this manuscript are appreciated.

References

- 1 B. B. Keele, Jr., J. M. McCord and I. Fridovich, J. *Biol. Ch. B. Reefe, J_L, J. M. M.*
 $C1 - C176$ (1974). J. J. kIlaf;anca, k. J. 'Yost and I. Fridovich, J. *Biol.*
- *Chem., 249, 3532* (1974). R. A. Weisiger and I. Fridovich, *J. Biol. Chem., 248,*
- \mathbf{a} *3582* (1973). J. M. McCord and I. Fridovich, *J. Biol. Chem., 244, 6049*
- (1960) B. B. Keele, Jr., J. M. McCord and I. Fridovich, *J. Biol.*
- *B. B. Reele, Jr., J. M. M.*
Cl. 246, 2005 (1951). F. J. Yost, Jr., I. Fridovich, J. *Biol. Chem., 248, 4905*
- *(1973).* I. Fridovich,Acct. *Chem. Res., 5,* 32(1972).
- J. M. Olsen, *Science, 168, 438* (1970).
- R
- $W.$ M. Chisen, *Detence*, 100, 430 (1770). m. M. Coleman, R. R. Goenfing, L. 1. 1aylor, J. G.
M. **Chem. Sot.,** *I. S. S. S. S. 101, 2311* Mason and R. K. Boggess, J. Am. Chem. Soc., 101, 2311 (1979); W. M. Coleman, R. K. Boggess, J. W. Hughes and L. T.
- *12 BUT, Inorg. Chem., 20, 100 (1981).*
10 W. M. G. L. L. T. T. T. L. L. L. L. Cl. **W. M. Coleman, R. K. Boggess, J. 1**
- 11 W. M. Coleman and L. T. Taylor, *Znorg. Chem., 16,* 1114 *42, 683* (1980).
- (17) , (17) (1977).
- $\overline{1}$ *React. Inorg., Metal-Org. Chem., 7, 333* (1977). $W \sim 1$ *And Drg. Chem., 1, 333 (1911).*
I. T. T. T. I. I. I. I. Cl.
- 11, 11, COIGH!
41, 95 (1989).
- 14 J. S. Valentine and A. B. Curtis, *J. Am. Chem. Soc.*, 97, 18 J. S. V. 224 (1975). (1976).
- 15 W. M. Coleman and L. T. Taylor, *J. Am. Chem. Soc.*, 19 D. T. S 100, 1705 (1978). (1979). 16 W. M. Coleman, L. T. Taylor, R. K. Boggess and J. W. 20 J. S. Valentine, Y. Tatsuno and M. Nappa, *J. Am. Chem.*
- Hughes, Znorg. *Chim. Actu, 38, 183* (1980). Sot., *99, 3522* (1977). 17 K. M. Kadish and S. Kelly, *Inorg. Chem., 18, 2968 21* J. Stein, J. P. Fackler, Jr., G. J. McClune, J. A. Fee and
-
- *18 J. S. Valentine and A. E. Quin, Inorg. Chem., 15, 1997*
- 15 W. M. Coleman and L. T. Taylor, *J. Am. Chem. Sot.,* 19 D. T. Sawyer and M. J. Gibian, *Tetrahedron, 35, 1471*
-
- K. M. Kadish and S. Kelly, *Inorg. Chem., 18*, 2968 21 J. Stein, J. P. Fackler, Jr., G. J. McClune, J. A. Fee and (1979).
L. T. Chan, *Inorg. Chem., 18*, 3511 (1979).